Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella
نویسندگان
چکیده
Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06-37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from -8.1 to -24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment.
منابع مشابه
Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles
The purpose of this study was to use solid lipid nanoparticles (SLN) to improve the pharmacological activity of ofloxacin. Ofloxacin-loaded SLN were prepared using palmitic acid as lipid matrix and poly vinyl alcohol (PVA) as emulsifier by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron micros...
متن کاملSustained Cytotoxicity of Wogonin on Breast Cancer Cells by Encapsulation in Solid Lipid Nanoparticles
While wogonin has been known to have cytotoxicity against various cancer cells, its bioavailability and cytotoxicity are low due to its low water solubility. Therefore, wogonin-loaded solid lipid nanoparticles were fabricated using a hot-melted evaporation technique. The highest solubility of wogonin was observed in stearic acid. Hence, wogonin-loaded solid lipid nanoparticles were composed of ...
متن کاملInvestigation of cytotoxicity properties of zinc oxide nanoparticles in spherical and rod shaped on leukemia cells
In this study, we reported a method to associate doxorubicin drug on folic acid functionalized SiO2/ZnO nanoparticles (NPs) in rod and spherical shapes. The clinical usage of the anticancer drug, doxorubicin (DOX), is limited by severe side effects and cell resistance. Targeted drug delivery by binding DOX to nanoparticles could overcome these limitations. The surface functionalization of the Z...
متن کاملApplication of Supercritical Fluid Technology for Preparation of Drug Loaded Solid Lipid Nanoparticles
Small changes in pressure or temperature, close to the critical point, lead to large changes in solubility of supercritical carbon dioxide (CO2). Environmentally friendly supercritical CO2 is the most popular and inexpensive solvent which has been used for preparation of nanodrugs and nanocarriers in drug delivery system with supercritical fluid technology. Delivery...
متن کاملDevelopment of Gentamicin-loaded Solid lipid Nanoparticles: Evaluation of Drug Release Kinetic and Antibacterial activity against Staphylococcus aureus
1 *Corresponding Address: Email id: [email protected] ABSTRACT Context: The attention to solid lipid nanoparticles (SLNs) particularly in the field of drug delivery has increased during the recent years. Objective: This research was designed to load gentamicin onto SLNs to produce a drug delivery system with controlled release. Materials and methods: Ultrasonication/highspeed homogenization te...
متن کامل